Sunday, March 20, 2016

TUGAS TERSTRUKTUR
DISAKARIDA

Berapakah kandungan amilosa dan amilopektin pada jagung, beras, sagu,gandum,ubi kayu dan kentang ?

jawab :

1.  Jagung




Komponen utama jagung adalah pati, yaitu sekitar 70% dari bobot biji. Komponen karbohidrat lain adalah gula sederhana, yaitu glukosa, sukrosa dan fruktosa, 1-3% dari bobot biji. Pati terdiri atas dua jenis polimer glukosa, yaitu amilosa dan amilopektin. 


Komposisi amilosa dan amilopektin di dalam biji jagung terkendali secara genetik. Secara umum, baik jagung yang mempunyai tipe endosperma gigi kuda (dent) maupun mutiara (flint), mengandung amilosa 25-30% dan amilopektin 70-75%. Namun jagung pulut (waxy maize) dapat mengandung 100% amilopektin. Suatu mutan endosperma yang disebut amylose-extender (ae) dapat menginduksi peningkatan nisbah amilosa sampai 50% atau lebih. Gen lain, baik sendiri maupun kombinasi, juga dapat memodifikasi nisbah amilosa dan amilopektin dalam pati jagung. Amilopektin berpengaruh terhadap sifat sensoris jagung, terutama tekstur dan rasa. Pada prinsipnya, semakin tinggi kandungan amilopektin, tekstur dan rasa jagung semakin lunak, pulen, dan enak. Komposisi tersebut juga berpengaruh terhadap sifat amilografinya. Kandungan amilosa beberapa varietas lokal dan unggul nasional dapat dilihat pada Tabel 3 (Suarni 2005).

 


2.  Beras



Bagian terbesar beras didominasi oleh pati (sekitar 80-85%). Beras juga mengandung protein, vitamin (terutama pada bagian aleuron), mineral, danair. Pati beras dapat digolongkan menjadi dua kelompok yaitu amilosa pati dengan struktur tidak bercabang dan amilopektin dengan struktur bercabang. Perbandingan komposisi kedua golongan pati ini sangat menentukan warna (transparan atau tidak) dan tekstur nasi (lengket, lunak, keras, atau pera). Ketan hampir sepenuhnya didominasi oleh amilopektin sehingga sangat lekat, sementara beras pera memiliki kandungan amilosa melebihi 20% yang membuat butiran nasinya terpencar-pencar (tidak berlekatan) dan keras.


Berdasarkan kandungan amilosanya, beras dibagi menjadi empat golongan, yaitu ketan (2-9 persen), beras beramilosa rendah (9-20 persen), beras beramilosa sedang (20-25 persen) dan beras beramilosa tinggi (25-33 persen). Secara umum, beras memiliki bentuk polygonal bulat dengan ukuran bulat 3-8 mikron, dan suhu gelatinisasi 68-78oC.
Beras ketan dan beras biasa (non ketan) berbeda kandungan amylosa dan amylopektinnya. Amylosa berantai lurus dengan ikatan 1-4 alfa-glikosidik, sedangkan amylopektin berantai cabang dengan ikatan 1-4 alfa dan 1-6 beta glikosidik pada percabangannya dengan panjang rantai 20 – 26 satuan glukosa. Ketan (atau beras ketan), berwarna putih, tidak transparan, seluruh atau hampir seluruh patinya merupakan amilopektin. Perbandingan antara amilosa dan amilopektin ini dijadikan dasar atau merupakan factor tunggal dalam menentukan mutu rasa dan tekstur nasi. Kandungan amilosa tersebut berkorelasi positif dengan tingkat kelemahan, kelengketan, warna dan kilap. Semakin tinggi kadar amilosa volume nasi yang diperoleh makin besar tanpa kecenderungan mengempes, hal ini dikarenakan amilosa mempunyai kemampuan retrogadasi yang lebih besar. Beras dengan kandungan amilosa tinggi menghasilkan nasi pera dan kering, sebaliknya beras dengan kandungan amilosa rendah menghasilkan nasi yang lengket dan lunak. Semakin tinggi kandungan atau kadar amylose yang terkandung, maka akan semakin berkurang keenakan rasanya karena semakin tinggi kadar amylose yang terkandung, maka struktur nasi yang diperoleh akan semakin keras dan mempunyai struktur pisah-pisah.


3.  Sagu



Pati sagu tersusun atas dua fraksi penting yaitu amilosa yang merupakan fraksi linier dan amilopektin yang merupakan fraksi cabang. Fraksi terlarutnya adalah amilosa dengan kadar ±27% dengan struktur linier, sedangkan fraksi tidak terlarutnya adalah amilopektin dengan kadar ±73% dengan struktur bercabang (Yazid, et.al, 2006). Berdasarkan kandungan amilosanya, pati dibagi menjadi empat golongan, yaitu : Pati dengan kadar amilosanya tinggi (25 – 33 %); Pati dengan kadar amilosa menengah (20 – 25 %); Pati dengan kadar amilosa rendah (9 – 20 %); dan pati dengan kadar amilosa sangat rendah (< 9 %) (Winarno,2002).
Pati sagu yang ada di Indonesia umumnya merupakan pati sagu yang diperoleh melalui ekstraksi secara tradisional. Proses ekstraksi yang dilakukan secara tradisional hanya memisahkan pati berdasarkan kemampuannya untuk tersuspensi di dalam air kemudian mengendapkan pati yang tersuspensi (Herawati, 2009).  Keberadaan komponen selain pati pada pati sagu menjadi bagian dari penentu mutu pati sagu. Proses ekstraksi pati sagu yang dilakukan dengan baik akan menghasilkan pati dengan tingkat kemurnian yang tinggi yaitu dengan kandungan abu, lemak, protein dan serat kasar yang serendah mungkin. Adanya variasi metode dan peralatan yang digunakan dalam ekstraksi pati sagu di setiap daerah menyebabkan adanya perbedaan tingkat kemurnian sagu yang diperoleh.


Sagu memiliki kandungan karbohidrat, protein, lemak, kalsium, dan zat besi yang tinggi. Dengan kandungan tersebut, sagu berpotensi dijadikan sebagai bahan baku sirup glukosa yang dapat meningkatkan nilai tambah sagu. Pati sagu mengandung 27% amilosa dan 73% amilopektin. Perbandingan komposisi kadar amilosa dan amilopektin akan mempengaruhi sifat pati. Semakin tinggi kadar amilosa maka pati bersifat kurang kering, kurang lekat dan mudah menyerap air (higroskopis). Komposisi kimia sagu asal Indonesia dapat dilihat pada tabel berikut :



4.  Gandum



Gandum (Triticum spp.) merupakan tanaman serealia dari suku padi-padian yang kaya akan karbohidrat. Selain sebagai bahan makanan, gandum dapat pula diolah sebagai bahan-bahan industri yang penting, baik bentuk karbohidrat utamanya atau komponen lainnya.
Granula pati gandum berbentuk elips dengan ukuran granula 2-35 µm. Kandungan amilosa dalam pati gandum adalah 25% sedangkan amilopektinnya sebesar 75%. Dalam produk makanan, amilopektin bersifat merangsang terjadinya proses mekar (puffing) dimana produk makan yang berasal dari pati yang kandungan amilopektinnya tinggi akan bersifat ringan, porus, garing dan renyah. Hal ini dikarenakan amilopektin memiliki sifat mudah mengembang dan membentuk koloid dalam air. Kebalikannya pati dengan kandungan amilosa tinggi, cenderung menghasilkan produk yang keras, pejal, karena proses mekarnya terjadi secara terbatas (Pudjihastuti, 2010). Oleh karena itulah tepung gandum utuh cocok digunakan untuk pembuatan roti dan kue karena pati gandum mengandung amilopektin yang tinggi yang sangat berpengaruh terhadap swelling properties (sifat mengembang pada pati).
Kadar amilosa pada gandum berhubungan dengan indeks glisemiknya dan daya cerna pati. Kandungan amilosa dalam gandum utuh yang cukup tinggi yaitu sebesar 25%, menyebabkan daya cerna pati serta indeks glisemik gandum yang rendah. Indeks glisemik gandum utuh adalah 55-69 (Foster dan Miler, 1995). Indeks glisemik dan daya cerna pati yang rendah menyebabkan proses pencernaan karbohidrat di dalam tubuh lamban karena karbohidrat tidak langsung dicerna menjadi gula darah, sehingga makanan olahan yang berasal dari gandum utuh sangat baik untuk penederita diabetes mellitus. 


5.  Ubi Kayu



Umbi akar singkong banyak mengandung glukosa dan dapat dimakan mentah. Dari umbi ini dapat pula dibuat tepung tapioka. Tapioka adalah pati yang diperoleh dari hasil ekstrak ubi kayu, dimana pati itu terdiri dari dua fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan yang tidak larut disebut amilopektin. Tepung tapioca mengandung 17 % amilosa dan 83 % amilopektin. Perbandingan amilosa dan amilopektin mempengaruhi sifat kelarutan dan derajat gelatinisasi pati.



Semakin kecil kandungan amilosa atau semakin tinggi kandungan amilopektinnya, maka pati cenderung menyerap air lebih banyak (Tjokroadikusumo, 1986). Gelatinisasi suhu berkisar antara 58,8oC-70oC. Pati yang kandungan amilopektinnya tinggi akan membentuk gel yang tidak kaku, sedangkan pati yang kandungan amilopektinnya rendah akan membentuk gel yang kaku. Pati jagung berbentuk bulat dengan ukuran granula patinya berkisar 5-25 mikron.



6.  Kentang



Kentang (Solanum Tuberosum) merupakan umbi dari bagian batang tanaman. Kentang merupakan tanaman berbentuk semak/herba. Secara kimia, umbi kentang banyak mengandung air. Pati yang dihasilkan memiliki sifat yang berbeda-beda tergantung dari jenis patinya. Kentang memiliki bentuk bulat telur pada granulanya, berukuran 15-100 mikron, dan suhu gelatinisasinya 58-66oC. Kandungan amilum pada kentang adalah sekitar 59,7%. Bentuk dominan dari karbohidrat ini adalah patiBila digoreng, kentang hanya akan mengandung karbohidrat sebesar 27%. Sedangkan penyajian dalam bentuk direbus, akan memberikan karbohidrat yang lebih besar, yaitu sebesar 35%.


Saturday, March 19, 2016

D i s a k a r i d a
d a n
P o l i s a k a r i d a

A.  Disakarida

Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam.
1.     Maltosa
Maltosa (gula gandum) tidak terdapat bebas di alam, melainkan diperoleh dari hasil hidrolisis amilum dengan katalis diastase atau hasil hidrolisis glikogen dengan katalis amilase. Hidrolisis maltosa akan menghasilkan dua satuan glukosa dengan menggunakan katalis enzim maltase atau katalis asam.



Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.



Struktur maltosa

Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.

2.     Sukrosa

Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.


Struktur sukrosa

Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa. Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal. Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.

Hidrolisis sukrosa menghasilkan glukosa dan fruktosa. Sukrosa memutar cahaya terpolarisasi ke kanan, sedangkan campuran hasil hidrolisis sukrosa memutar ke kiri, sehingga campuran glukosa-fruktosa yang dihasilkan disebut gula invert. Sukrosa bukan gula pereduksi dalam larutan air karena sukrosa tidak memiliki gugus aldehid, dibuktikan dengan tidak bereaksinya (mereduksi) dengan pereaksi Fehling, Benedict dan Tollens. Hidrolisis sukrosa dapat terjadi dengan menggunakan katalis asam encer atau enzim invertase. Sukrosa mudah larut dalam air.




Perbandingan tingkat kemanisan beberapa gula :



3.     Laktosa

Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.


Struktur laktosa


Hidrolisis laktosa dengan katalis enzim laktase akan menghasilkan glukosa dan galaktosa



Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.

B. Polisakarida

Polisakarida merupakan polimer monosakarida, mengandung banyak satuan monosakarida yang dihubungkan oleh ikatan glikosida. Hidrolisis lengkap dari polisakarida akan menghasilkan monosakarida. Glikogen dan amilum merupakan polimer glukosa. Berikut beberapa polisakarida terpenting.

1.    Selulosa 

Selulosa merupakan polisakarida yang banyak dijumpai dalam dinding sel pelindung seperti batang, dahan, daun dari tumbuh-tumbuhan. Selulosa merupakan polimer yang berantai panjang dan tidak bercabang. Suatu molekul tunggal selulosa merupakan polimer rantai lurus dari 1,4’-β-D-glukosa. Hidrolisis selulosa dalam HCl 4% dalam air menghasilkan D-glukosa.


Struktur selulosa

Dalam sistem pencernaan manusia terdapat enzim yang dapat memecahkan ikatan α-glikosida, tetapi tidak terdapat enzim untuk memecahkan ikatan β-glikosida yang terdapat dalam selulosa sehingga manusia tidak dapat mencerna selulosa. Dalam sistem pencernaan hewan herbivora terdapat beberapa bakteri yang memiliki enzim β-glikosida sehingga hewan jenis ini dapat menghidrolisis selulosa. Contoh hewan yang memiliki bakteri tersebut adalah rayap, sehingga dapat menjadikan kayu sebagai makanan utamanya. Selulosa sering digunakan dalam pembuatan plastik. Selulosa nitrat digunakan sebagai bahan peledak, campurannya dengan kamper menghasilkan lapisan film (seluloid).

2.   Pati / Amilum

Pati terbentuk lebih dari 500 molekul monosakarida. Merupakan polimer dari glukosa. Pati terdapat dalam umbi-umbian sebagai cadangan makanan pada tumbuhan. Jika dilarutkan dalam air panas, pati dapat dipisahkan menjadi dua fraksi utama, yaitu amilosa dan amilopektin.
Zat ini terbentuk pada proses fotosintesis dalam klorofil daun dengan bantuan energi matahari.
6 n CO2 + 5 n H2O (C6H10O5) n + 6 n O2
Hidrolisis amilum dengan katalis enzim amilase atau enzim diastase akan menghasilkan sejumlah satuan maltosa. Selanjutnya, maltosa dihidrolisis dengan katalis enzim maltase menghasilkan dua satuan glukosa.



Perbedaan terletak pada bentuk rantai dan jumlah monomernya. Amilosa adalah polimer linier dari α-D-glukosa yang dihubungkan dengan ikatan 1,4-α. Dalam satu molekul amilosa terdapat 250 satuan glukosa atau lebih. Amilosa membentuk senyawa kompleks berwarna biru dengan iodium. Warna ini merupakan uji untuk mengidentifikasi adanya pati.


Struktur amilosa

Molekul amilopektin lebih besar dari amilosa. Strukturnya bercabang. Rantai utama mengandung α-D-glukosa yang dihubungkan oleh ikatan 1,4'-α. Tiap molekul glukosa pada titik percabangan dihubungkan oleh ikatan 1,6'-α.


Struktur amilopektin

Hidrolisis lengkap pati akan menghasilkan D-glukosa. Hidrolisis dengan enzim tertentu akan menghasilkan dextrin dan maltosa.

Permasalahan :

Jelaskan bagaimana pembentukan dari disakarida dan berikan contohnya !

Sunday, March 13, 2016

TUGAS TERSTUKTUR
SENYAWA ORGANOLOGAM



1. Buatlah reaksi pembentukan organolitium !

Jawab :


Lithium dan magnesium adalah logam yang sangat elektropositif. Li-C atau Mg-C obligasi di organolitium dan organomagnesium reagen sangat terpolarisasi ke arah karbon.


Banyak reagen organometalik yang tersedia secara komersial. namun, itu sering diperlukan. Persamaan berikut menggambarkan reaksi untuk logam lithium dan magnesium yang umum digunakan (R mungkin hidrogen atau alkil kelompok dalam kombinasi apapun).

- Sebuah alkil reagen Litiun


R        3CX+2LiR3CLi+LiX



- Sebuah reagen grignard



Organolithium addition

Reaksi-reaksi ini jelas reaksi substitusi, tetapi mereka tidak dapat diklasifikasikan sebagai substitusi nukleofilik, seperti reaksi awal dari alkil halida. Karena atom karbon fungsional telah berkurang, polaritas kelompok fungsional yang dihasilkan terbalik (suatu karbon awalnya elektrofilik menjadi nukleofilik). Perubahan ini, yang ditunjukkan di bawah, membuat alkil litium dan Grignard reagen reaktan yang unik dan berguna dalam sintesis.




Reaksi dari organolitium dan reagen Grignard mencerminkan karakter nukleofilik (dan dasar) dari karbon fungsional dalam senyawa ini. Banyak contoh reaksi tersebut akan ditemui dalam diskusi masa depan, dan lima contoh sederhana ditunjukkan di bawah ini. Persamaan pertama dan ketiga menunjukkan sifat sangat dasar dari senyawa ini, yang ikatan dengan cepat ke proton asam lemah air dan metil alkohol (berwarna biru). Karbon nukleofilik reagen ini juga obligasi mudah dengan elektrofil seperti yodium (persamaan kedua) dan karbon dioksida (persamaan kelima). Polaritas ikatan karbon-oksigen dari CO2 membuat atom karbon elektrofilik, yang ditunjukkan oleh rumus di kotak berbayang, sehingga karbon nukleofilik obligasi pereaksi Grignard ke situs ini. Seperti disebutkan di atas, solusi reagen ini juga harus dilindungi dari oksigen, karena peroksida terbentuk (persamaan 4).




Reaksi penting dipamerkan oleh ini reagen organometalik adalah bursa logam. Pada contoh pertama di bawah, metil lithium bereaksi dengan iodida tembaga untuk memberikan reagen tembaga lithium dimetil, yang disebut sebagai reagen Gilman. lithiums alkil yang lain memberikan reagen yang sama Gilman. Sebuah aplikasi yang berguna reagen ini adalah kemampuan mereka untuk pasangan dengan alkil, vinil dan aril iodida, seperti yang ditunjukkan pada persamaan kedua. Kemudian kita akan menemukan bahwa reagen Gilman juga menampilkan ikatan karbon-karbon berguna membentuk reaksi dengan enones terkonjugasi dan dengan asil klorida.

2 CH3Li   +   CuI   ——>  (CH3)2CuLi   +   LiI     Pembentukan Reagen Gilman

(C3H7)2CuLi   +   C6H5I   ——>  C6H5-C3H7   +   LiI   +   C3H7Cu     Sebuah Reaksi Coupling



2. Buat ia bereaksi dengan suatu karbokation, sehingga rantai atom karbon bertambah panjang 4x ! (dengan alkil halida, dengan suatu ester, dengan suatu erpoksida dan dengan suatu keton)

Jawab :


- dengan alkil halida



R        3
CX+2LiR3CLi+LiX


membuat alkil litium dan Grignard reagen reaktan yang unik dan berguna dalam sintesis :




atau


- dengan suatu ester


(gambar kedua)

Contoh :



- dengan suatu epoksida

- dengan suatu keton


Reaksi dengan keton akan menghasilkan Alkohol



Contoh :









TUGAS TERSTRUKTUR
MONOSAKARIDA


1. Tuliskan contoh triosa ada dua variasi yaitu L dan D yang mana yang paling berguna untuk makhluk hidup ?

Jawab :

Senyawa ini merupakan zat antara yang penting dalam lintasan metabolik fotosintesis dan respirasi sel. Yang termasuk ke dalam golongan ini adalah gliseraldehid dan dihidroksiaseton.

Contoh triosa L dan D
Dua aldotetrosa yang lain mempunyai gugus hidroksil pada atom karbon 3 diproyeksikan kekiri, konfigurasinya sama seperti pada L-gliseraldehid. Dengan dasar konfigurasi dari karbon chiral, semua karbohidrat dapat digolongkan kedalam satu dari dua subdivisi utama atau keluarga, keluarga D atau keluarga L. Semua golongan D monoskarida mempunyai gugusan hidoksil dari atomkarbon chiral paling bawah diproyeksi kekanan pada proyeksi fischer. Gula L justru berlawanan, gugus hidroksil pada hidroksil atom karbon chiral paling bawah diproyeksikan kekiri.




Di alam lebih banyak ditemukan monosakarida yang berisomer D, maka semua monosakarida yang ada di alam dianggap berasal dari D-Gliseraldehida. Dengan sistematis ditemukan cara menentukan rumus struktur kimia monosakarida yang banyak ditemukan di alam ini. Dengan cara menyisipkan gugus H-C-OH dan gugus HO-C-H berganti-ganti diantara atom C nomor 1 dan nomor 2 pada D-Gliseraldehida. Dengan demikian maka didapatlah 4 aldopentosa dan 8 aldoheksosa.



2. Tetrosa mana yang berfungsi pada proses metabolisme manusia?
Jawab :





tertrosa terdiri dari eritrosam treosa dan eritrulosa. tertrosa memiliki peran dalam metabolisme manusia. tetrosa jenis ertirosa yang berperan dalam proses metabolism yaitu sebagai pembentukan eritrosit (sel darah merah)

3.  Reaksi Disakarida dan ikatan glioksida, mengapa dapat terjadi ?

Jawab :

Disakarida
Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam.
1.  Maltosa
Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.



                Struktur maltosa

Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.


2.    Sukrosa
Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.


Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.
Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.
Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.


3.   Laktosa
Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.



Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.


Pembentukan
Disakarida terbentuk ketika dua monosakarida bergabung bersama dan satu molekul air dihilangkan, proses ini dikenal sebagai reaksi dehidrasi. Misalnya, gula susu (laktosa) terbentuk dari glukosa dan galaktosa di mana gula dari gula tebu dan gula bit (sukrosa) terbentuk dari glukosa dan fruktosa. Maltosa, disakarida terkenal lainnya, terbentuk dari dua molekul glukosa. Dua monosakarida yang terbentuk melalui reaksi dehidrasi (juga disebut reaksi kondensasi) atau sintesis dehidrasi) yang menyebabkan hilangnya sebuah molekul air dan pembentuk satu ikatan glikosida.


Sifat-sifat
Ikatan glikosida dapat terbentuk antara setiap gugus hidroksil pada komponen monosakarida. Jadi, bahkan bila kedua komponen gula sama (misalnya, glukosa), berbeda kombinasi ikatannya (regiokimia) dan stereokimia (alfa- atau beta-) dihasilkan sebagai disakarida yang merupakan distereomer dengan sifat-sifat kimia dan fisika yang berbeda.
Bergantung pada konstituen monosakaridanya, disakarida terkadang kristal, terkadang larut dalam air, dan terkadang terasa manis dan dan terasa tajam.


4.   Bagaimana cara mengidentifikasi monosakarida heksosa, 3 saja?

Jawab :

Uji benedict (glukosa)
Glukosa adalah adalah salah satu karbohidrat terpenting yang digunakan sebagai suber tenaga. Untuk menguji glukosa maka dibutuhkan alat yang berupa benedict. Jadi setiap makanan ketika diuji dengan meneteskan benedict dapat diketahui bahwa makanan tersebut mengandung glukosa atau tidak. Cara membuktikannya yaitu ketika makanan yang ditetesi benedict dan berwarna merah bata, seperti pada gambar disamping, maka makanan tersebut mengandung glukosa, dan apabila tidak berwarna merah bata maka makanan tersebut tidak mengandung glukosa. Dari hasil penelitian, terbukti bahwa glukosa, gula, dan kanji memiliki glukosa. Dan yang memiliki kandungan glukosa terbanyak adalah glukosa, kemudian gula, dan yang terakhia adalah kanji. Kita dapat mengetahui makanan yang memiliki kandungan glukosa dengan warna merah bata yang terlihat sangat jelas.

Uji Seliwanoff (fruktosa)
Uji ini berdasarkan reaksi konversi fruktosa menjadi asam levulinat dan hidroksi metifurfrural oleh HCl panas,dan selanjutnya terjadi kondensasi hidroksil.
Pereaksi seliwanoff terdiri dari serbuk resorsinol + HCl encer. Bila fruktosa diberi pereaksi seliwanoff dan dipanaskan dlm air mendidih selama 10 menit akan terjadi perubahan warna menjadi lebih tua. 

Uji Fehling
Glukosa, galaktosa, maltosa mengandung gugus aldehid, sehingga dengan perekasi
·        Digunakan untuk menunjukkan adanya karbohidrat pereduksi (monosakarida, laktosa, maltosa, dll)
·        Uji positif ditandai dengan warna merah bata
Pereaksi Fehling terdiri atas dua macam larutan, yaitu larutan Fehling A dan Fehling B. Larutan Fehling A adalah larutan CuSO4, sedangkan Fehling B adalah larutan kalium-natrium-tartrat dan NaOH dalam air. Kedua macam larutan ini disimpan secara terpisah dan dicampur ketika akan digunakan.